Ionospheric Statistics from EOR Data

M. Mevius

09/04/14

university of groningen

LOFAR

LOFAR Science meeting

OUTLINE

- Data description
- Extracting dTEC from phase solution
- Time correlation
- Spatial Structure
- Scintillation Winter 2013/2014

Data

- 25 8 hour HBA observations of 3C196
- winter 2012/2013
- BBS solutions:
 - (V. Pandey)
 - full polarization matrix
 - 4 component model of 3C196
 - NO other sources in the skymodel

Getting TEC

- Start from selfcal phases
- Extract diff Faraday rotation by converting solutions to RL
- Derotate solution matrices, inspect XX, YY phase vs. frequency
- Unwrap phases, find initial solutions

 $d\phi = a^*v + b/v$, fit a,b

a = C1* delay (ns), b= C2 * dTEC(TECU)

- But:
 - $d\phi \pm 2\pi$ gives different solutions for delay and dTEC
 - \pm ~3ns and \pm ~0.05 TECU, depending on the frequency range
 - with almost same χ^2
 - Constant phase: $d\phi + \phi_0$ will be absorbed in the solutions with corresponding fraction of offsets
- Remove phase wraps and constant ϕ_0 by checking spatial correlations (average linear gradient over array)

Code available in experimental area of LOFAR tree and soon in LOSOTO

Time average of fitted dTEC vs latitude of station

dTEC solutions

- Inspect dTEC solutions versus time for all stations, 25 observations
- Many interesting features, wave like structures...

Also smaller timescale structures observed

Structure function

Spatial fluctuations:

$$D_{\phi}(||r_1-r_2||) = \langle (\phi_1 - \phi_2)^2 \rangle$$

Kolmogorov turbulence, thin layer approximation:

$$- D_{\varphi}(\mathbf{r}) = (\mathbf{r} / s_0)^{\beta}$$

$$- \beta = 5/3,$$

- s_0 : field coherence scale, $D_{\phi}(s_0) = 1 \text{ rad}^2$

Convert dTEC to $\phi @ 150 \text{MHz}, \text{ plot vs.} \\ baselinelength$

Linear (mostly NS) gradient over array:

$$\beta = 2.$$

Remove 2D fitted linear gradient, before calculating $\text{var}(\phi)$

Linear (mostly NS) gradient over array:

β = 2.

Remove 2D fitted linear gradient, before calculating $\text{var}(\phi)$

band like structure: due to orientation?

select only NS (EW) oriented baselines (within 10 degrees)

Large scale non-Kolmogorov structures, eg. TID (?)

band like structure: due to orientation?

similar structure observed when adding large scale (2nd order 2D fit to data) to pure Kolmogorov spectrum

Spatial coherence between 3 and 52 km

Estimate of noise contribution to image of uncorrected ionosphere

rms image inversely proportional to s0

Distributions for 23 observations

β in general larger than 5/3

large scale effects (TIDs?)

average image noise (V. Pandey, old model

data)

varies from night to night up to a factor 2

Correlation image noise S₀

Correlation image noise variance(dTEC) RS

S₀ determined on short baselines mostly independent measure

meeting

Scintillation winter 2013/2014

If S_0 < Fresnel scale (~600m @ 2m):

- amplitude decorrelation
- Not observed in 2012/2013
- Many nights this winter
 - but also very good (=stable ionosphere) nights

VTEC winter 2013/2014 (CODE data)

movie by G. de Bruyn, using excon (S.Yatawatta)

Fit source positions

09/04

correlation between position shift of sources as function of distance between the sources

25

Conclusion + Acknowledgements

- derive ionospheric structure from selfcal phases
- Night to night image rms correlates with structure of ionosophere
- Position accuracy depends on source separation

Many thanks to

S. vd Tol and V. Pandey!